
U
ser interfaces for em-
bedded systems come
in a wide variety of
styles and complexity.
The interface can be as

simple as a set of pushbuttons with
LEDs for feedback or as complex as a
graphical Windows-style interface.
The level of sophistication is general-

ly limited by the amount of available
memory and code space, and a good
graphical interface with online help is
typically larger than one Mbyte of
code space, which is out of the range
of most embedded systems.

This article traces the development
of a text-based menu system that pro-
vides a balance between functionality,

expandibility, and code space. We’ll
look at the basics of such a system. I’ll
suggest additional features that may be
layered onto the basic system.

A text-based menu system presents
full-screen menus to the user contain-
ing several selections. These selections
may lead to other menus or perform
other functions. This is the same type
of interface provided by dial-up bul-
letin board systems (BBSs), most auto-
matic teller machines (ATMs), and so
on. Text-based menus can be presented
on a built-in LCD or over a serial port
to a device capable of VT100 or ANSI
terminal emulation.

Text-based menus provide several
advantages:

• They give a high level of control and
access by the user (given a sufficient
number of menus and prompts).
• They are user-friendly—prompts can
be relatively descriptive in 20 to 40
characters, and menus are easier to
navigate than command-line interfaces
(like DOS).
• They gain wide acceptance from a
variety of interface devices (PCs, hand-
held terminals, built-in displays).

Perhaps the biggest advantage for
the programmer is that a well-designed

66 EMBEDDED SYSTEMS PROGRAMMING SEPTEMBER 1995

A text-based menu system is a “middle ground” interface, more
complex but smaller and simpler than graphical Windows-style
interfaces. This article demonstrates how to develop a text-based
menu system, using an automatic teller machine as an example.

by STEVE DREVIK

Text Interfaces
for Embedded Systems

M
il

li
on

ai
re

 G
ra

ph
ic

s

menu system can be easily changed
and adapted for increasing require-
ments and functionality.

DESIGN

Amenu is defined as the con-
tents of any particular screen
presented to the user. A menu

will present two or more selections for
the user to choose from:

/* 25 lines per page is reasonable for
most terminal types, but programmers can
allocate space for headers, footer text */

#define MAX_SELECTIONS 24

<insert typedef for SELECTION here >

typedef struct _menu
{

int id;
int num_selections;
SELECTION selection[MAX_SELECTIONS];

}MENU;

We add an ID code to each menu for
reference later. These ID codes can be
attached to descriptive labels in the
code using an enumeration:

enum _menu_ids
{

MAIN_MENU,
SECONDARY_MENU,
....
};

The selection is the basic building
block of the menu. When selected, it
can lead to another menu or invoke an

action function such as saving a file or
spawning a control task. It consists
minimally of a prompt, or label string,
and selection action:

typedef struct _selection
{
char prompt[MAX_PROMPT_LEN];
int (*function)(int);
int fn_arg;
}SELECTION;

Here, we assume that the selection
action will have an integer argument
(for additional flexibility) and will be
designed to return an integer value (to
return possible errors).

The menu structure for an ATM
machine (presented after inserting the
card and entering the PIN) might be
defined as shown in Listing 1.

As new account types are added
(money markets, IRAs, credit cards),
all the programmer needs to do is to
add appropriate items to the menu,
and write appropriate handlers for
do_deposit(), do_withdrawl(), and
show_balance(). If the ATM needs to
be expanded to initiate a videophone
call to the bank using the built-in
camera and microphone, a new item
can be added to the main menu and a
function handler written to support the
new feature.

The menu is managed by a single
function:

void mdi() /* Menu Driven Interface */
{
char c;
MENU *curr_menu =

find_menu(MAIN_MENU);
int curr_selection = 0;

/* Peform I/O initialization, draw an
introduction page, and so on */

init_mdi()

/* Draw the main menu */

draw_menu(curr_menu, curr_selection);

while(TRUE)

The selection is

the basic building

block of the menu.

It can lead to

another menu or

invoke an action

function such as

saving a file.

SEPTEMBER 1995 EMBEDDED SYSTEMS PROGRAMMING 67

{

The following instruction is where
mdi() will spend the majority of its
time waiting. If this program is run-
ning in a real-time environment, this
function should have hooks to return
control of the CPU to the multitasking
kernel.

c = readch();
// returns special codes defined by us
// for arrow keys, page_up, and so on.

switch(c)
{
case UP_ARROW:

if(curr_selection !=0)
{
curr_selection—;
draw_menu(curr_menu, curr_selection);
}

break;

case DOWN_ARROW:
if(curr_selection < (curr_menu->

num_selections-1))

{
curr_selection++;
draw_menu(curr_menu, curr_selection);
}

break;

case ENTER:
(*curr_menu->selection

[curr_selection].function)
(curr_menu->selection

[curr_selection].fn_arg);
break;

}

}

The draw_menu() function not only puts
the selections on the screen, it also
shows which selection is currently
active using inverse text mode or a side
arrow.

The screen flicker caused by
redrawing the menu when a selection
is changed using the arrow keys can be
annoying. A function that deselects the
current selection and highlights the
new selection (a single function, called
with FORWARD or BACKWARD
arguments) is more visually appealing.

EDITORS

The same menu structures can be
expanded to make simple edi-
tors. Rather than having an

action function, an editor menu selec-
tion will have a key handler to take
console input and store it in memory
and, optionally, a prompt function to
take current settings in memory and
construct a string to display to the
user:

typedef struct _selection
{
char prompt[MAX_PROMPT_LEN];
int (*function)(int);

/* Action function */
int fn_arg;
char * (*pro_function)(int);

/* Prompt function */
int pro_fn_arg;
int (*key_function)(int);

/* Key handler */

68 EMBEDDED SYSTEMS PROGRAMMING SEPTEMBER 1995

Text Interfaces for Embedded Systems

LISTING 1
Simple ATM menus.

enum _menu_ids
{

MAIN_MENU,
DEPOSIT_MENU,
WITHDRAWL_MENU,
BALANCE_MENU

};

MENU menu[] =
{

{ MAIN_MENU,4,
{“Perform A Deposit”, goto_menu(), DEPOSIT},
{“Perform a Withdrawl”, goto_menu(), WITHDRAWL},
{“Obtain a Balance Statement”, goto_menu(), BALANCE),
{“Quit”, logout(), 0}
},

{ DEPOSIT_MENU, 3,
{“Deposit to Checking”, do_deposit(), CHECKING},
{“Deposit to Savings”, do_deposit(), SAVINGS),
{“Go Back”, goto_menu(), MAIN_MENU}
},

{ WITHDRAWL_MENU, 3,
{“Withdrawl from Checking”, do_withdrawl(), CHECKING),
{“Withdrawl from Savings”, do_withdrawl(), SAVINGS),
{“Go Back”, goto_menu(), MAIN_MENU}
},

{ BALANCE_MENU, 3,
{“Print Checking Balance”, show_balance(), CHECKING},
{“Print Savings Balance”, show_balance(), SAVINGS},
{“Go Back”, goto_menu(), MAIN_MENU}
},

/* Other menus here */
};

int key_fn_arg;
}SELECTION;

Assume that our ATM will now allow
the client to renew a driver’s license by
entering appropriate information
(name, licence number, address). This
code is shown in Listing 2.

The key handler and prompt func-
tion arguments will generally be the
same and can probably be merged to
save space in the menu. The functions
display() and keyedit() themselves
will be basically large switch() state-
ments, switching on the prompt/key
function argument.

typedef struct _selection
{
char prompt[MAX_PROMPT_LEN];
int (*function)(int);

/* Action function */
int fn_arg;
char * (*pro_function)(int);

/* Prompt function */
int (*key_function)(int);

/* Key handler */
int pro_key_fn_arg;
}SELECTION;

/* Global variables */

char global_curr_name[80];

int global_curr_lnum;

char global_curr_address[80];

char workbuf[80];
// scratchpad I/O buffer

char * prompt
(

int state
)
{
switch(state)

{
case NAME:

strcpy(workbuf,
global_curr_name);

break;

case LNUM:
sprintf(workbuf, “%d”,
global_curr_lnum);
break;

case ADDRESS:
strcpy(workbuf,
global_curr_address);
break;

}

return(workbuf);
}

The draw_menu() function now loops
through all the selections, displays the
prompt string (as before), and checks
for the existence of a prompt function.
If it does exist, the system will call the
prompt function, which will return a
string in the port’s working buffer
(workbuf). This string is then displayed

70 EMBEDDED SYSTEMS PROGRAMMING SEPTEMBER 1995

LISTING 2
License renewal menu.

MENU menu[] =
{

/* Previous menus here */

{RENEW_LICENSE_MENU, 3,
{“Enter Name:”, NULL, 0, prompt, NAME, keyedit,NAME},
{“Enter License Number:”, NULL, 0, prompt, LNUM, keyedit, LNUM},
{“Enter Address:”, NULL, 0, prompt, ADDRESS,keyedit, ADDRESS},
{“Quit, Back to Main Menu”, goto_menu(),MAIN_MENU, NULL,0, NULL, 0}
},

/* Other menus here */
};

in the correct area of the screen:

void draw_menu
(
MENU * menu
)
{

int selection_num;
SELECTION * selptr;

/* Clear the screen */
cls();

/* Loop through the actual number of
selections in THIS menu */

for(selection_num=0; selection_num
menu->num_selections; selection_num++)
{
/* Create a pointer for convenience */

selptr = &menu- >selection
[selection_num];

/* If this is the “active” menu selec-
tion (determine by referencing the global
variable `active_selection’) then draw it
in inverse text. */

if (selection_num == active_selection)
inverse(ON);

/* Print the prompt string */
setcur(selection_num + MENU_INDENT_Y,

MENU_INDENT_X);

printf(selptr—>prompt);

/* If this selection has a prompt
function, use it! */

if(selptr->pro_function)
{
/* Print the prompt string */
setcur(selection_num + MENU_INDENT_Y,

PROMPT_INDENT_X);
printf((*selptr->pro_function)

(selptr->pro_key_fn_arg));
}

/* Turn inverse back off if need be */

if (selection_num == active_selection)
inverse(OFF);
}

}

The mdi() function is expanded, as
shown in Listing 3, to call the keyhan-
dler input function only after valid
input has been completed.

Now that a basic menu system is in
place, how does the programmer han-
dle additional requirements? This very
generic approach to menus is well suit-
ed for add-on features.

PASSWORD PROTECTION

An integer variable can be added
to each SELECTION structure
to designate a privilege access

level. The user’s current login level
can be checked whenever the user tries
to edit or activate that selection. If the
user’s access is too low, a message can
be generated. It is also possible to
modify the draw_menu() function to
check the user’s current access against
the access of each selection before it is
drawn, and not draw that selection if
the user’s access is too low. Thus, a
low-level user will not even see the
higher-access selections.

FEATURE CONTROL SWITCHES

In some applications, the program-
mer develops one main line of
executable code for all clients but

may want to charge extra for certain
software options. It is undesirable to
create and test a copy of the software
for each possible combination (dis-
abling or enabling options using com-
pilation switches). The ideal route
would be to create and test one copy of
the software for all clients and to
enable or disable access to items not
purchased.

If the hardware has some non-
volatile memory, such as a small EE-
PROM, a bitfield can be stored indicat-
ing which options the client has pur-
chased. When the client wants to
upgrade to add a feature, a new EE-
PROM can be shipped. The bitfield in
the EEPROM is then compared against
a features bitfield add to each SELEC-
TION, and if the appropriate bits are
set, the selection is displayed:

72 EMBEDDED SYSTEMS PROGRAMMING SEPTEMBER 1995

typedef struct _selection
{

.... // original structure
int features_bitfield;
}SELECTION;

enum _feature_bits
{

FEATURE_ATM_VIDEOPHONE=0,
FEATURE_ATM_RENEW_LICENSE,
FEATURE_ATM_ORDER_MOVIE

};

#define FEATURE_ALL0
#define FEATURE_ATM_VIDEOPHONE_BIT

(0x01 << FEATURE_ATM_VIDEOPHONE)
#define FEATURE_ATM_RENEW_LICENSE

(0x01 <<
FEATURE_ATM_RENEW_LICENSE)

#define FEATURE_ATM_ORDER_MOVIE
(0x01 << FEATURE_ATM_ORDER_MOVIE)

MENU menu[] =
{

{ MAIN_MENU, 6,
{“Perform A Deposit”, goto_menu(),

DEPOSIT,
FEATURE_ALL},

{“Perform a Withdrawl”, goto_menu(),
WITHDRAWL,
FEATURE_ALL},

{“Obtain a Balance Statement”,
goto_menu(), BALANCE,
FEATURE_ALL),

{“Make A Video Phone Call”,
goto_menu(), BALANCE,

FEATURE_ATM_VIDEOPHONE_BIT),
{“Watch A Movie Right Here”,

goto_menu(), BALANCE,
FEATURE_ATM_VIDEOPHONE_BIT),

{“Quit”, logout(), 0}
},

/* Other Menus Here */

};

Finally, embed the following condi-
tion in the draw_menu() function as a
requirement to draw each selection:

if(!curr_menu->selection
[selection_loop_ctr].feature_bitfield ||

curr_menu->selection

[selection_loop_ctr].feature_bitfield &
eeprom.feature_bitfield)

{
/* Draw the selection */

}

If the programmer has adapted the
approach of using a hilite() function
to move the highlight selection, this
function will also need to look at the
features switches to determine which

74 EMBEDDED SYSTEMS PROGRAMMING SEPTEMBER 1995

Text Interfaces for Embedded Systems

LISTING 3
Expanded version of mdi.c.

void mdi() /* Menu driven interface */
{
char c;
MENU *curr_menu =

find_menu(MAIN_MENU);
int curr_selection = 0;
int status;

draw_menu(curr_menu, curr_selection);

while(TRUE)
{
c = readch(); // returns special

codes defined by us for arrow keys,
page_up, etc

switch(c)
{
case UP_ARROW:

if(curr_selection !=0)
hilite(FORWARD);

break;

case DOWN_ARROW:
if(curr_selection <

(curr_menu->num_selections-1))
hilite(REVERSE);
break;

case ENTER:
(*curr_menu->selection

[curr_selection].function)
(curr_menu->selection

[curr_selection].fn_arg);
break;

default:

if(curr_menu->selection
[curr_selection].key_handler != NULL)

{
if(get_input())

/* false if exited by ESC or CTRL-C,
returns true otherwise */

{
status = (*curr_menu->

selection[curr_selection].key_handler)
(curr_menu->selection

[curr_selection].pro_key_fn_arg);
}

else
{
redraw_prompt();
}

}
/* Else, ignore key input entirely

or feedback error to user */
}

int keyedit
(
int state

)
{
int okay = TRUE;

switch(state)
{
case NAME:

if(validate_name(workbuf))
strcpy(global_curr_name,workbuf);
else
okay = FALSE;
break;

case LNUM:
if(validate_lnum(workbuf))
global_curr_lnum = atoi(workbuf);
else
okay = FALSE;
break;

case ADDRESS:
if(validate_address(workbuf))
strcpy(global_curr_address,workbuf);
else
okay = FALSE;
break;

}
return(okay);
}

prompt is the displayed next and pre-
vious prompt.

RETURN VALUES

In the original design, all key han-
dler and action functions returned
a status. The preceding examples

only show a range of two possible
values, OK and NOT_OK. It would be bet-
ter to provide the user with more spe-
cific feedback. The programmer can
predefine a number of error codes and
even an array of strings listing the
appropriate error messages. The key
handler functions can then return
those specific error codes, and the
mdi() function can convert those
codes into appropriate error strings
via a lookup table.

The preceding examples had menu
selections for return to the previous
menu or directly to the home menu.
In actuality, this a waste of a selec-
tion and is counterintuitive to users of
DOS applications, who often expect
the ESC key or F10 key to return
them to the previous selection. The
switch() statement in mdi() can cer-
tainly look for such a key, but the
program needs to know which menu
to return to. The solution is to add a
parent menu ID code to each MENU
structure. The programmer can then
designate the backward link for each
menu item.

It is often handy to have a global
variable to designate a parent menu
ID as well. Programmers may find
instances where one submenu can be
reached by three or four menus.
When the user types ESC, the pro-
gram needs to come back to the cor-
rect menu. In this case, the true parent
is not known at compile time. So,
when entering that submenu, set an
alternate parent menu ID variable in
RAM. The ESC handler in mdi() will
check to see if that variable is set
first. If it is set, it goes to that menu
ID and clears the variable. If it is not
set, it looks into the MENU structure
for the active menu and uses the hard-
coded parent menu ID.

The previous examples of editors

assumed that the edit field width was
small enough to put on the end of the
line after the prompt string. If prompt
strings are 30 characters, and we
allow some space before reaching the
edit area, we are limited to 40 to 50
characters for an 80-column terminal.
This may not be sufficient for some
applications.

One solution is to specify a field
width in the SELECTION structure
for each selection containing prompt
and key handler functions (zero for
noneditor fields). The draw_menu func-
tion could then be designed to handle
longer fields by putting the additional
data on extra lines. The programmer
must be cautious because now a menu
with 10 selections may take 24 lines
of a page if many selections are longer
than a single line. Another program-
mer might add a new selection that
uses three lines, and now the menu no
longer fits on the screen even though
it only contains 11 selections.

If edit fields longer than 40 charac-
ters are the norm rather than the
exception, the menu design should
probably be rethought with this in
mind.

DYNAMIC MENUS

In most applications, the menu
prompt strings and actions will be
defined by the programmer at

compile time. However, there are
occasions where the user may want a
menu whose prompts are dynamic.
Using our ATM license-renewal
example, we might prompt the user
for names of immediate relatives in
one menu and go to another editor
menu to query the user as to what the
exact relation is for each name given:

Barney Williams: Father
Eleanor Williams: Mother
Michael Tate: Husband
Kelly Williams: Sister
Robert Williams: Brother

In this case, the prompt strings are
dynamic. Since the mdi() function
does everything through a pointer to

the active menu, we can dynamically
allocate a MENU structure, fill in the
appropriate fields (number of selec-
tions, prompts, access rights, handler
functions), and point the active menu
pointer to that block of memory.

In this situation, special care must
be taken to properly maintain the
parent menu ID and handle the
backup (ESC) key. The programmer
might create a standard that a parent
menu ID code of zero indicates a
dynamic menu, signaling that the
active_menu_ptr is a pointer to memo-
ry that must be deallocated before
going to the parent menu (but don’t
deallocate until you have read the par-
ent menu ID).

THE MENU STRUCTURE

One disadvantage of the listed
implementation is that a
MENU structure will take the

same amount of memory, no matter if
the menu has two prompts or all 25. To
conserve space, the programmer could
create several MENU typedefs that
vary only in terms of the maximum
number of allowed prompts
(TINY_MENU, SMALL_MENU, MEDIUM_MENU,
LARGE_MENU, and so on). The program-
mer would then put each menu into the
appropriate variable definition,
depending on the number of prompts
available. Check Listing 4 for the cor-
responding code.

For a system that executes out of
PROM, it is typically desirable to put
the MENU[] variables into PROM, inhib-
it their copy, and later reference in
RAM. This can be accomplished by
making a single C file (menus.c) that
does nothing but define or include the
header file that defines the menu vari-
ables. Compile that file with directives
that make the resulting object file a
unique segment. The code locator can
then be told not to automatically copy
that data segment to RAM.

This implementation of a text-based
menu system provides an interface that
is scalable in terms of the number of
menus as well as the complexity of fea-
tures. The breakdown of menus as an

76 EMBEDDED SYSTEMS PROGRAMMING SEPTEMBER 1995

Text Interfaces for Embedded Systems

array of selections makes the menu
structures easy to modify, and lends
itself well to code reuse. Much of the
code in the key handler and prompt
functions will be identical, referring to
other system variables. Adding a new
handler is a quick cut-and-paste opera-
tion. In fact, the development manager
will probably begin to see more bugs
caused by a programmer cutting and
pasting code and forgetting to modify
the underlying code for the new need.
The reuse advantages typically out-
weigh this annoyance, however, espe-
cially if everyone involved is made
aware of the pitfall.

Steve Drevik is a senior project engi-
neer at Environmental Systems Corp.
in Knoxville, TN. He has worked in
embedded systems development since
1988, developing data acquisition and
handling platforms for national and
international markets. He holds a MS
degree from the University of
Tennessee in electrical engineering.
He can be reached electronically at
thedrev@aol.com.

78 EMBEDDED SYSTEMS PROGRAMMING SEPTEMBER 1995

Text Interfaces for Embedded Systems

MENU * findmenu
(

int new_menu_id /* new menu ID */
)
{

MENU * ptr;
int i,j;

/** First, try to find menu in long
menu list **/

for(i = 0; i < MENU_END; i++)
{
if(new_menu_id == menu[i].menu_id)
{
ptr = (MENU *)&menu[i];
break;
}
}

/** If not found, try to find menu in
short menu list **/

if(new_menu_id >= MENU_END)
{

for(i=MENU_END+1,j=0;i<MEDIUM_MENU_END;
i++, j++)

{
if(new_menu_id ==

medium_menu[j].menu_id)
{
ptr = (MENU *)&medium_menu[j];
break;
}
}

if(new_menu_id >= MEDIUM_MENU_END)
{
for(i = MEDIUM_MENU_END+1, j = 0; i

< SHORT_MENU_END; i++, j++)
{
if(new_menu_id ==

short_menu[j].menu_id)
{
ptr = (MENU *)&short_menu[j];
break;
}
}

if(new_menu_id >= SHORT_MENU_END)
{
for(i=SHORT_MENU_END+1,j=0;i <

TINY_MENU_END; i++, j++)
{
if(new_menu_id ==

tiny_menu[j].menu_id)
{
ptr = (MENU *)&tiny_menu[j];
break;
}
}
/** Error if no match found in two

lists! **/

if(new_menu_id >= TINY_MENU_END)
{
return(NULL);
}
}

}
}

return(ptr);

}

LISTING 4
Expanded menu management.

typedef struct _medium_menu
{

int id;
int num_selections;
SELECTION selection[12];

}MEDIUM_MENU;

typedef struct _small_menu
{

int id;
int num_selections;
SELECTION selection[6];

}SMALL_MENU;

typedef struct _tiny_menu
{

int id;
int num_selections;
SELECTION selection[3];

}TINY_MENU;

/* This somewhat complicates the
goto_menu function, but not much */

void goto_menu /* Set & display
active menu */
(

int new_menu_id /* new menu ID */
)
{

MENU * menu;
int i,j;
extern MENU * curr_menu;

menu = findmenu(new_menu_id);

if(menu == NULL)
{
/* System error */
}

else
curr_menu = menu; /* curr_menu is

now a global or external variable */

draw_menu();

return;

}

//

	button:

